亿彩票下载

時間:2019-12-02
  发光二极管(LED)技術广泛用于为小尺寸液晶显示器中的像素提供照明( LCDs)在电池供电的应用中。由LED发出的白光通过偏振器传输到LCD,在那里可以阻挡或衰减光,并将其发送到RGB滤色器以产生彩色光。
 

  圖1:背光LED驅動系統。圖1顯示了背光LED驅動器的系統級視圖,該驅動器由DC/DC轉換器和一個或多個調節電流源組成。此外,基于RGB-LED的背光需要基于溫度的反饋控制,這相當于比基于白光LED的背光更高的成本。可以使用多少PCB面積?需要什麽功能?系統消耗多少電量?回答這些問題可以指導設計人員選擇合適的背光LED驅動器。
  用于LED背光的DC/DC轉換器
  在具有單節锂離子源的便攜式應用中,電壓降的總和白色,綠色或藍色LED和電流源可以低于或高于電池電壓。這意味著,雖然紅色LED可以直接由單節锂離子電池供電,但白色,藍色或綠色LED需要電池電壓有時會提升。
  選擇一個時要考慮的第一個方面用于電池供電應用的LED驅動器是IC驅動器與外部組件共占的總面積(圖2)。
 

  圖2:典型PCB布局示例:電荷泵(左),電感升壓(右)。
  两种升压技術被广泛使用:升压DC/DC转换器,也称为感应升压,以及开关电容转换器,也称为电荷泵。电荷泵实现仅需要四个陶瓷电容器和一个低功率电阻器,这通常会导致更小的解决方案尺寸。推荐用于这些应用的电容值为0.47μF至1μF,额定电压为10V(有助于直流偏置损耗)。这些电容器可以在许多电容器制造商的0402或0603外壳尺寸中找到。总溶液尺寸小于21mm 2 是相当普遍的,并且还具有非常薄,小于1mm的优点。根据LED驱动器封装,电容器可以是解决方案中最高的元件与开关电容驱动器相比,基于电感升压的LED驱动器往往具有更大的解决方案尺寸。基于电感升压的LED驱动器的典型解决方案尺寸接近板面积的30mm 2 。电感式驱动器通常需要两个电容,一个在输入端,另一个在输出端,电容值为1μF至2.2μF,可提供0603和0805外壳尺寸。电感升压需要一个可以处理峰值电感电流和输出电压的整流元件。在同步升压中,可以将通过PFET集成到IC中。但是,这种集成通常会导致IC封装的大小超过异步解决方案。在集成的高压PFET或肖特基二极管的存在下,功率转换效率也降低约10%。在异步拓扑中,传递元件由肖特基二极管组成。与开关电容器升压相比,电感升压的主要区域增加是电感器本身。具有6-8个LED的电流为15mA至20mA的应用通常需要一个10μF至22μH的电感器,饱和电流在0.4A至0.5A之间。这些电感器可以在小于3.0mm x 3.0mm的占地面积中找到。电感器也是解决方案中最高的元件,高度范围为0.8mm至1.2mm。
  提高電池電壓的最簡單方法是使用升壓型DC/DC轉換器(圖3)。該方法的優點在于在所有負載和輸入電壓條件下具有非常高的效率,因爲輸入電壓可以升高到LED正向電壓和電流源淨空電壓的總和。如前所述,這顯著優化了成本和PCB面積的效率。
  

  图3显示了磁性升压调节器的工作原理。当NFET开关闭合时(实线箭头),电感器电流iL(t)从t = t0处的最小值Ia向上斜升至t = t1处的最大值Ib。在此期间,肖特基二极管反向偏置,负载由存储在输出电容器中的能量支持。
  在t = t1时,NFET开关关闭,存储在电感器L中的能量现在传递到输出电容器和通过肖特基二极管的负载(虚线箭头)。因此,电感器电流在时间t2期间下降到先前的Ia值。输出电压必须大于输入:如果此电压关系不正确,则电感不会放电到输出网络。换句话说,当NFET截止时,电感器两端的电压反转,因为电流放电不会立即发生。由反向磁电压增加的输入电压导致输出电压高于输入电压。当串联驱动10个LED时,所需的电源电压可高达35V。升压拓扑结构的另一个优点是简化了PCB布线:驱动器和LED串之间只需要两个连接。第二种提高电池电压的方法是使用电荷泵(其简单实现如下所示)图4),它利用了电容器的以下特性:电容器电荷累积不会瞬间发生,这意味着电容器两端的初始电压变化等于零。
  圖3:LM3509,電感升壓LED驅動器。
  電壓轉換分兩個階段完成。在第一階段期間,開關S1,S2和S3閉合,而開關S4-S8斷開。因此C1和C2堆疊,假設C1等于C2,充電到輸入電壓的一半:
 

  輸出負載電流由輸出電容提供。當該電容器放電並且輸出電壓低于所需的輸出電壓時,第二相被激活,以便將輸出電壓升高到該值以上。在第二階段期間,C1和C2並聯,連接在VIN和VOUT之間。開關S4-S7閉合,而開關S1-S3和S8斷開。由于電容上的電壓降不會瞬間改變,輸出電壓會跳躍到輸入電壓值的1.5倍:
  

  圖4:充電具有1x和1.5x增益的泵電路以這種方式,完成升壓操作。開關信號的占空比通常爲50%,因爲該值通常會産生最佳的電荷轉移效率。
  通過閉合開關S8並使開關S1-S7斷開,可實現增益爲1倍的電壓轉換。電荷泵方法的好處是沒有電感器。電感是EMI噪聲的,會影響顯示器或手機中的無線電性能。
  電荷泵中的輸入功率和LED效率
  在電荷泵LED驅動器中,輸出功率關系如此用于效率計算,假設所有LED都相同,由下式給出:
 

  圖5顯示了典型的效率圖,其中步驟指示了增益轉換。
  但是,對于給定的LED電流,正向電壓可隨工藝和溫度而變化。這意味著LED的效率可以變化,仍然保持亮度恒定,因爲後者僅取決于電流。爲了清楚起見,讓我們考慮一個基于自適應電荷泵的LED驅動電路。以下規格:
  圖5:電荷泵LED效率。
  

  不會影響電池的功耗,但會影響驅動電路的功耗。因此,效率不足以評估功耗:必須考慮的是輸入功率與LED亮度,即LED電流。對于給定的LED亮度,輸入功率是衡量從電池中排出多少電子的真實指標。
  在以前的條件下,增益爲1.5倍,無論VLED如何,輸入功率都等于333mW。
  由于電荷泵轉換器具有有限數量的電壓增益,因此基于應用規範,總是存在驅動器電路中的一定量的浪費功率。因此,爲了使輸入功率最小化,以盡可能小的增益操作電荷泵是非常重要的。
  恒流LED驅動器
  LED特性決定了達到所需水平所需的正向電壓電流,決定發光量。由于LED電壓與電流特性的變化,僅控制LED兩端的電壓會導致光輸出的變化。因此,大多數LED驅動器都使用電流調節。
  

  圖6:調節電流源。
  实现电流调节的电路是低压差稳压器,如图6所示。误差放大器获取R2,V2两端的电压,将其与参考电压VREF进行比较,并通过串联传输元件NFET将LED电流IDX调整为驱动误差信号所需的值(VERR = VREF-V2)尽可能接近零。 VREF等于:
  

  只有當VOUT-VLED足夠高以保持傳輸元件不飽和時,才成立。事實上,電流源需要跨越它們的最小電壓,稱爲淨空電壓VHR,以便通過LED提供所需的調節電流。淨空電壓通常用電阻建模:
  亮度可以通过改变LED电流(模拟控制)直接控制,也可以通过快速关闭LED来间接控制亮度来创建对人眼调光的感知(PWM控制)。在大多数便携式应用中,模拟亮度控制是优选的,因为背光控制器通常远离LED驱动器。因此,必须将带有PWM信号的PCB走线靠近噪声敏感系统(如无线电发射器,扬声器或显示器),这可能会导致问题。最后,在需要优质色域的应用中,红色,绿色和蓝色使用LED。红色LED由InGaAlP制成,而蓝色和绿色均由InGaN制成。当环境温度变化时,与蓝色和绿色相比,红色的主波长发生显着变化,因此需要某种温度补偿反馈环路。 LP5520(图7)通过使用内部校准存储器调整RGB LED电流以获得完美的白平衡(色彩精度ΔX和ΔY《0.003),内存校准存储器存储LED的强度与温度数据,以及外部温度传感器。
 

  图7:LP5520,背光RGB LED驱动器。
上一篇:基于LED電源的幾個EMC/EMI控制技術解析
下一篇:74HC138系列單片機控制LED數碼管的原理圖解析

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技術資料